Musculoskeletal System

- Dental Relevance of the musculoskeletal system
- The Musculoskeletal system allows for contractions of muscles, having an understanding of this aids in diagnosis of patients with problems with chewing/closing/opening the jaw
- Knowing how Local Anaesthetic (LA) takes effect

Neuromuscular Transmission

- Conduction sequence which results in Action potentials

- Pre-synaptic depolarisation \rightarrow AP travels down axon to the pre-synaptic terminal
- AP activates the voltage gated calcium channels, opening them, allowing for an influx of calcium into the cytosol, increasing the concentration of calcium inside.
- Calcium binds to synaptic vesicles which contain neurotransmitter, this allows the synaptic vesicles to undergo exocytosis by binding to the cell membrane and releasing the neurotransmitter into the synaptic cleft
- NT (ACh) binds with postsynaptic receptors/Ligand gated channels (nicotinic acetylcholine receptors nAChR)
- Bound receptors regulate ion conductances (e.g 3d conformational change in shape, resulting in an open pore, $\mathrm{Na}+$ influx)
- Transmitter is cleared,taken back into presynaptic terminal or by glia (ACh unbinds from receptors when there is a $\mathrm{Ca} 2+$ deficit). This step occurs by a myriad of processes
- Diffusion
- Enzymatic breakdown (acetylcholinesterase \rightarrow breaks it down into acetate and choline for reuptake)
- Transport (re-uptake)
- Post-synaptic muscular characteristics
- Only contain nicotinic acetylcholine receptors, but in high concentrations - Results in high safety factor (EPP - threshold)
- Allows it to respond dependably to stimulus
- End plate potential experienced by muscle \rightarrow An above threshold depolarisation triggers an AP (usually 50 mv or more in magnitude)
- Post-synaptic muscular response/Excitation-contraction coupling

- ACh released by pre-synaptic terminal into synaptic cleft
- ACh Binds to nAChR at the end plate, resulting in an EPP
- AP is generated and travels along the surface of membrane and down t-tubules of muscle cell
- Action potential causes Dihydropyradine receptors on the T-tubule interact with ryanodine/foot receptors on the sarcoplasmic reticulum, Causing voltage gated calcium channels to open, releasing calcium into the cytosol
- Before calcium binds to troponin, ATP on the myosin motorhead splits into inorganic phosphate and ADP, producing energy and resetting/cocking the motor head.
- Calcium ions bind to troponin on actin filaments, causing a conformational shape change in the molecule as tropomyosin shifts, unmasking the binding sites
- Actin and myosin motorhead bind, forming a cross bridge
- Upon formation of cross bridge, motorhead undergoes powerstroke, consuming energy. Inorganic phosphate released during powerstroke and ADP released at the end of powerstroke
- New ATP molecule attaches to myosin motorhead, This allows actin and myosin to unbind
- Cycle repeats

(3) As new ATP attaches to the myosin head, the cross bridge detaches
- Ending muscular contractions
- Ca2+ is pumped into SR from cytosol via CaATPase pump
- $\mathrm{Ca} 2+$ levels in cytosol fall, calcium unbinds from troponin
- Tropomyosin returns to original state and mask binding sites

Russell Lee

- Twitch Summation and Tetanus

○

- Twitch Summation
- If muscle fiber is restimulated before it is completely relaxed, second twitch is an addition to it, resulting in summation, resulting in greater force
- Tetanus
- Muscle fiber undergoes rapid stimulation, such that no time opportunity for relaxation, a maximal sustained contraction is obtained, known as tetanus
- prolonged contraction without relaxation
- Muscle eventually undergoes fatigue at which it has to relax
- Length-Tension Relationship

- Greatest force can be generated when muscle is at a length with an optimal amount of overlap of actin and myosin filaments
- When there is excessive overlap of actin and myosin, no more space for titin to contract, no space for myosin to pull z disk any closer, results in no contraction when sarcomere is excessively short due to structural impingement
- When there is a minor overlap of actin and actin, Some of the motorheads are blocked from contracting, resulting in sub-optimal contractile force
- When There is little overlap, fewer myosin heads can interact with actin as they get further apart from the M line, resulting in fewer number of power-strokes occuring causing less force
- When there is too little overlap, no myosin heads can interact with actin, resulting in no power-strokes being able to occur, hence no contractile force/tension

Muscle

- The 3 types of muscles

	Skeletal Muscle	Cardiac Muscle	$\underline{\text { Smooth Muscle }}$
$\underline{\text { Nuclei? }}$	Multinucleated, 2-4	1 or 2	1
$\underline{\text { Striations? }}$	Striated	Striated	No striations
$\underline{\text { Intercalated Disks? }}$	No IC disk	Contain IC disk	No IC disk
$\underline{\text { Voluntary? }}$	Voluntary	Involuntary	involuntary
$\underline{S h a p e ? ~}$	Fibrilar	Fibrilar	Spindle/fusiform shape

Russell Lee

- Skeletal Muscle
- 1 muscle fibre $\rightarrow 1$ myocyte
- Made up of bundles of myofibrils, myofibrils made of myofilaments
- Muscle fibre encapsulated by ENDOMYSIUM
- A fascicle, which is a bundle of muscle fibres is encapsulated by PERIMYSIUM
- Multiple fascicles are encapsulated by EPIMYSIUM
- These are protective layers of CT that help to dissipate force/tension evenly amongst the muscle \rightarrow passive tensile force transmission

○
Anatomy of Muscle

- Cardiac Muscle
- Intercalated disks
- Consists of
- Desmosomes \rightarrow strong adhesion

Russell Lee

- Fascia adherens \rightarrow strong adhesion + actin anchoring sites
- Gap Junctions \rightarrow quick communication between cardio myocytes and allow them to function in syncytium via electrical transmission

- Smooth muscle
- Actin and myosin bundles not organized in a regular fashion like other myocytes
- Actin attached to dense bodies
- Myosin attached between actins

