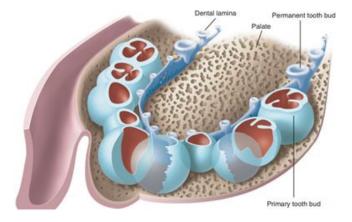
Odontogenesis

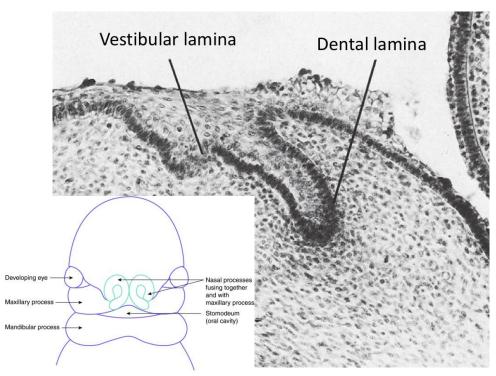
Keru Lau Joanne Li Olivia Kian

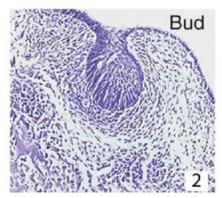
Thanks To Our Sponsors



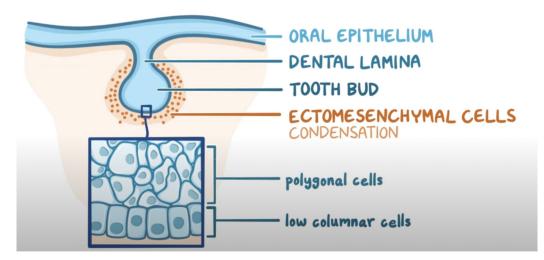
Odontogenesis

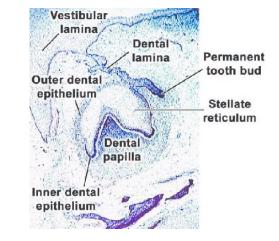
Primary vs. permanent tooth development

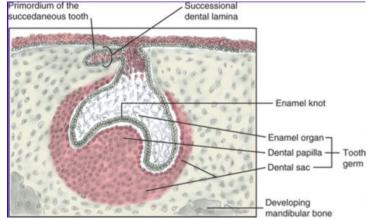

The primary teeth form from deciduous tooth germs while the permanent incisors, canines and premolars develop from successional dental lamina located lingual to the deciduous tooth germs. Permanent molars have no deciduous predecessors (grow directly from the dental lamina).


The primary dentition is initiated 6-8 wks in utero while the secondary dentition is initiated around wk 14 in utero. Following times are for the development of primary teeth, timings in utero.

Initiation (6th-7th Week)


- Primary epithelial band forms in the primitive oral cavity in the 6th week
- Forms the dental and vestibular lamina in the 7th week
- Reciprocal signalling from the ectoderm to mesenchyme to ectoderm
- Oral epithelium invaginates into the ectomesenchyme -> dental lamina -> dental placodes


Bud Stage (8th Week)

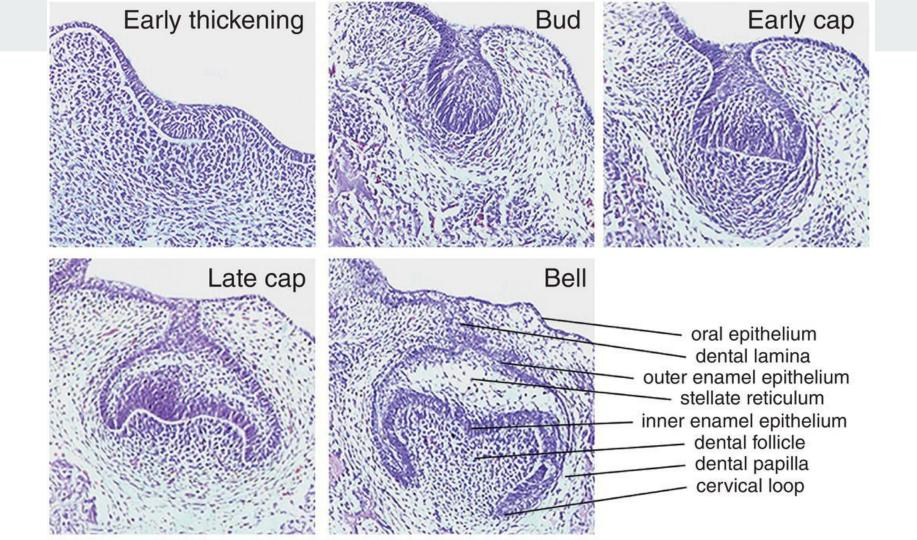

- Extensive proliferation of the dental lamina into buds
- Continual condensation of ectomesenchyme
- These buds together with surrounding ectomesenchyme will develop into a tooth germ

Cap Stage (9-10th Week)

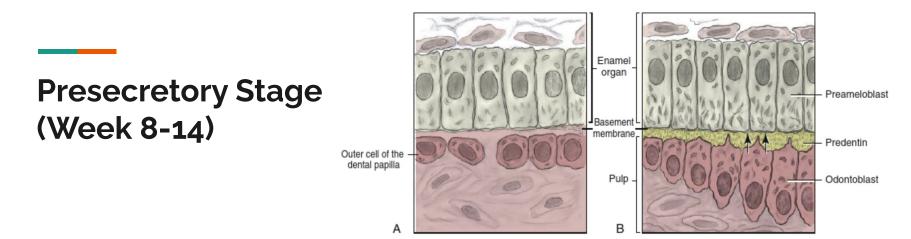
- Superiorly attached to the dental lamina
- Differentiation occurs and first example of morphogenesis
- Depression results in the deepest part of each tooth bud of dental lamina -> enamel organ
 - Outer surface -> crown of the tooth
 - Inner part -> cusps (occur through nondividing cells in the enamel knot)
- Part of the ectomesenchyme deep to the buds has condensed to form the dental papilla -> produce the dentine and pulp
- Remaining ectomesenchyme condenses into the dental sac -> periodontium, cementum, PDL and alveolar process
- Enamel organ + dental papilla and dental sac = tooth germ

Bell Stage (11-12th Week)

Continual proliferation, differentiation and morphogenesis -

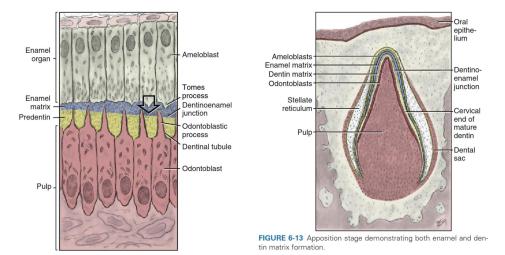

TABLE 6-4 Bel	I Stage Structures (from Outer to Inner)		Dental papilla
CELL LAYERS	HISTOLOGIC FEATURES	ROLE IN TOOTH FORMATION	
Dental sac	Increasing amount of collagen fibers forming around the enamel organ	Will differentiate into cementum, periodontal ligament, and alveolar process	Dental follicie
Outer enamel epithelium	Outer cuboidal cells of enamel organ	Serves as protective barrier for enamel organ	- Tollicie
Stellate reticulum	More outer star-shaped cells in many layers, forming a network within the enamel organ	Supports the production of enamel matrix	_
Stratum intermedium	More inner compressed layer of flat to cuboidal cells	Supports the production of enamel matrix	_
Inner enamel epithelium	Innermost tall, columnar cells of enamel organ	Will differentiate into ameloblasts that form enamel matrix	_
Outer cells of dental papilla	Outer layer of cells of the dental papilla nearest the inner enamel epithelium of the enamel organ. A basement membrane is between this outer layer and the inner enamel epithelium.	Will differentiate into odontoblasts that form dentin matrix	Credit: Margaret Fehrenbach and Tracy Popowics, 2019
Central cells of dental papilla	Central cell mass of the dental papilla	Will differentiate into pulp tissue	_

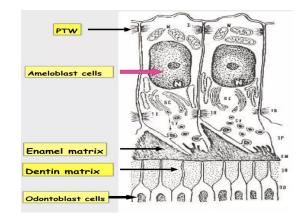
predentin


Inner enamel

epithelium

Stratum intermedium

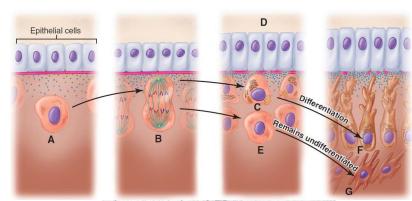

Apposition and Maturation Stages

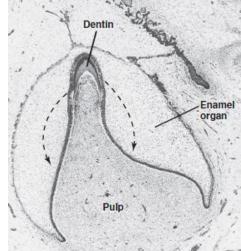


- After IEE formation, differentiate into preameloblasts lining up alongside the basement membrane
 - Nucleus moves away from the centre of the cell further away from the basement membrane
- Reciprocal Induction
 - IEE become more columnar -> preameloblasts -> induces dental papilla cells to produce odontoblasts -> predentine -> basal lamina disintegrates contacts preameloblasts -> ameloblasts
 - Histologically: Increased RER and golgi apparatus (golgi app also moves away from the dentine)

Apposition (Secretory) Stage

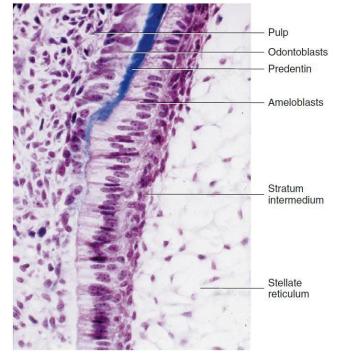
- Enamel, dentine and cementum are secreted initially as a matrix which serves as a framework for mineralisation
- Ameloblasts begin amelogenesis (appositional growth of enamel matrix) down the side of the disintegrating basement membrane
 - Starts at the cusp tips/incisal edge near the forming DEJ then moves cervically to the CEJ
 - Ameloblasts' trajectory: outwards away from the cusp tips
- Enamel matrix is secreted from the Tomes process (distal part of the ameloblast)
- Transitional Phase apoptosis of 25% of ameloblasts


Maturation Stage (Week 18+)

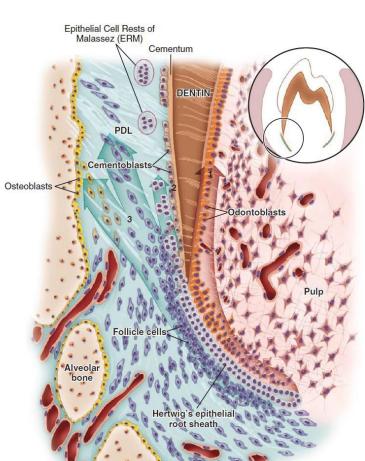

- Matrix of the hard tissues subsequently mineralise
- Ameloblasts then work on actively transporting minerals and proteins inorganic material (ruffle ended ameloblasts, increase SA, introduce more inorganic materials)
- Ameloblasts then undergo morphologic changes (decrease in height and volume of organelles) for the removal of water and organic material (smooth ended ameloblasts)
- After ameloblasts finish their job become part of the REE which fuses with the oral mucosa creates a canal for the enamel cusp tip to erupt
 - Dormant stage protection and inactivity

Dentinogenesis

Differentiation of odontoblasts


- Dental papilla cells (preodontoblasts) > odontoblasts
 - Signalling molecules from inner enamel epithelium (IEE)
 - Odontoblasts are bigger in size, highly polarized and have more protein-synthesizing organelles
- 1 Dental papilla cell > 2 cells (1 terminally differentiated odontoblast & 1 undifferentiated)
 - Undifferentiated serves as a reservoir for damage
- The whole formation occurs in a cusp tip to root direction

Mantle dentine formation & dentine mineralisation


- Odontoblasts develops stubby processes and lay down organic matrix (Predentin)
- Appearance of matrix vesicles signals start of mineralisation
 - Predentine mineralizes to form mantle dentine
- Reciprocal induction occurs (mentioned in slide 10)
- Odontoblasts move towards center of dental papilla as they deposit dentine
- 2 patterns of dentine mineralisation depends on rate of dentine formation
 - Globular faster
 - Linear slower

Cementogenesis

Cementogenesis

- Occurs during late bell stage & coincides with tooth eruption
- OEE and IEE converges into a cervical loop that proliferates apically > Hertwig's epithelial root sheath
- Onset of root dentinogenesis > formation root sheath fragments
 - Fragments form epithelial cell rests of malassez (ERM)
 - ERM may be involved in periodontal repair & regeneration
- Contact between dentine and inner follicle cells (due to fragmentation of root sheath) > follicle cells differentiate into cementoblasts

Multirooted teeth

• Ingrowths determined by areas of low vascularity

Some Key Molecules in the Pe	
	SUGGESTED FUNCTION RELATED TO CEMENTOGENESIS
Growth Factors	
Transforming growth factor β superfamily (including bone morphogenetic proteins)	Reported to promote cell differentiation and subsequently cementogenesis during development and regeneration.
Platelet-derived growth factor and insulin-like growth factor	Existing data suggest that platelet-derived growth factor alone or in combination with insulin-like growth factor promotes cementum formation by altering cell cycle activities.
Fibroblast growth factors	Suggested roles for these factors are promoting cell proliferation and migration and also vasculogenesis—all key events for formation and regeneration of periodontal tissues.
Adhesion Molecules	
Bone sialoprotein Osteopontin	These molecules may promote adhesion of selected cells to the newly forming root. Bone sialoprotein may be involved in promoting mineralization, whereas osteopontin may regulate the extent of crystal growth.
Epithelial/Enamel Proteins	Epithelial-mesenchymal interactions may be involved in promoting follicle cells along a cementoblast pathway.
	Some epithelial molecules may promote periodontal repair directly or indirectly.
Collagens	Collagens, especially types I and III, play key roles in regulating periodontal tissues during development and regeneration.
	In addition, type XII may assist in maintaining the periodontal ligament space versus continuous formation of cementum.

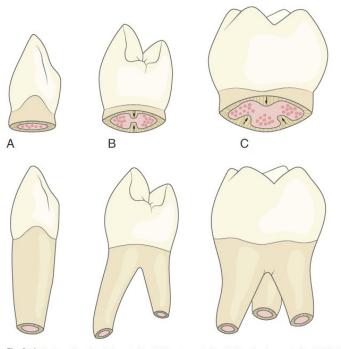
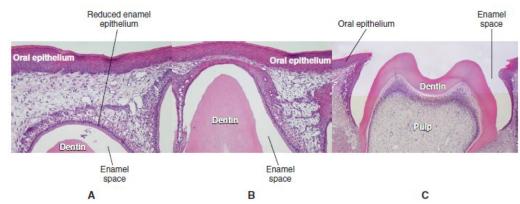



Fig. 25.1 The formation of a single-rooted tooth (A), a two-rooted tooth (B) and a three-rooted tooth (C). Small red circles indicate vascular concentrations.

Tooth eruption

- 1. Starts after initiation of root development
- 2. Formed enamel covered by layer of reduced enamel epithelium
- 3. Resorption of overlying bone
- 4. Crown passes through CT
- 5. Outer cells of reduced enamel epithelium proliferate
 - a. Collagen degradation so crown can pass through CT
- 6. Degeneration of overlying fibroblasts within CT
- 7. Reduced enamel epithelium fuses with oral epithelium forming a mass of epithelium over the crown
 - a. Central cells in the mass degenerate to form epithelial canal for tooth to erupt into oral cavity

Dental Age & Timing of Development

Calcifications (Crown)

Primary Teeth Calcifications

- Central incisors ³/₄ crown
- Lateral incisors ½ crown
- Canines ¹/₃ crown
- First molars only cusps but united (calcified junctions between cusps)
- Second molars only cusps, calcification not joined (isolated)

Secondary Calcifications (Occurs postnatally) - Important

- 1 3 months
- 2 (Md) 5 months
- 3 5 months
- 2 (Mx) 1 year
- 4 1 ¹/₂ 2 ¹/₄
- 5 2 ¹/₂ 3 ¹/₂
- 6 Birth
- 7-2¹/₂-3¹/₂
- 8-7-12

Calcification (Root)

Primary Root Formation

Central incisors - 1.5 years

Lateral incisors - 2 years

Canines - 3 ¼ years

First molars - 2.5 years

Second molars - 3.5 years

Terminology

Teeth emerge into the oral cavity when approximately 75% of the root has been formed

 Eruption = movement of tooth from the non-functional alveolar process to its final functional position in the occlusal plane
Emergence = <u>point</u> at which the tooth has breached the oral mucosa (visually seen)

To complete calcification

- Crowns always take four years (except for the 6s)
- Incisor roots take 4-5 years
- Other tooth roots- canines, premolars, molars- take 7-8 years
- Apical closure takes 3 years after emergence
- 6s develop faster, 3 years for crown, 4 for root

Tooth eruption times

There are variations of tooth eruption times between different textbooks but these are the ones we used. Can check with Dr Hughes for the exact times he wants.

Tooth Eruption

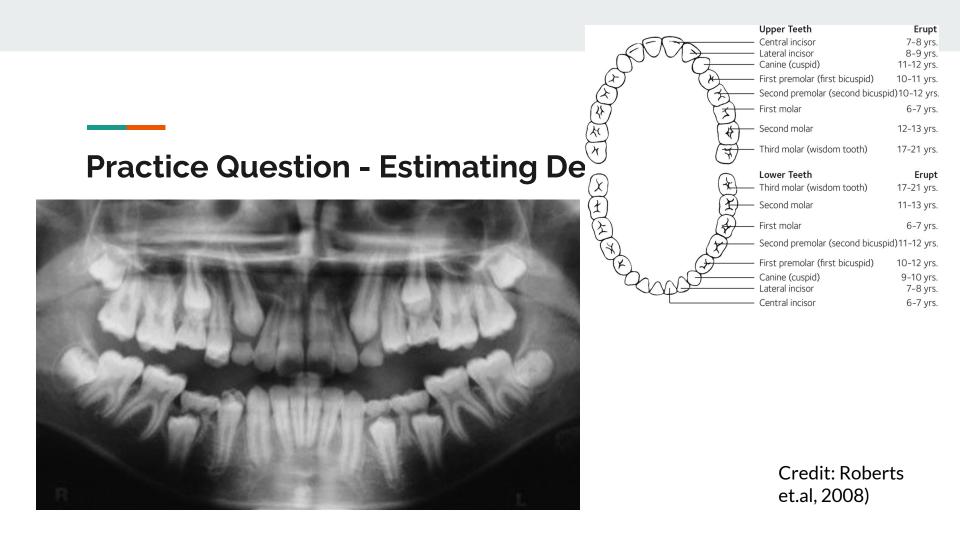
		Primary Teeth				
	Teeth	Central Incisor	Lateral Incisor	Canine	1 st Molar	2 nd Molar
	Mx	10 months	11 months	1 year 6 months	1 year 4 months	2 years 5 months
	Md	8 months	1 year 1 month	1 year 8 months		2 year 3 months
7						
Γ		Permanent Teeth				

	Permanent Teeth							
Teeth	Central Incisor	Lateral Incisor	Canine	1 st Premolar	2 nd Premolar	1 st Molar	2 nd Molar	3 rd Molar
Mx	7-8 years	8-9 years	11-12 years	10-11 years	10-12 years	6-7 vears	12-13 years	17 21 10250
Md	6-7 years	7-8 years	9-10 years	11-12 years	11-12 years	0-7 years	11-13 years	17-21 years

Credit: Jessica Thai

Calculating Dental Age + Timing of Dental Development

FORMULA:


Dental age = (% crown development x 3/4) + (%root development x 4-5/7-8) + time of initial calcification

In COMBINATION WITH:

- Eruption times
- Give a range of ages (>7 years or 7-9 yo)
 - EG. 36 fully developed crown and root = pt is over the age of 7
- Pick 2-3 teeth, calculate and then average to get more reliable result

FINAL STATEMENT:

• EG. Therefore, pt is approximately 12 years old

Developmental abnormalities

Stages of odontogenesis & associated disturbances

The type of tooth defects are related to the stage of odontogenesis in which the disturbance has occurred.

Stage of odontogenesis	Disturbance	
Initiation (number of teeth)	Anodontia (absence of all teeth, rare) Supernumerary teeth	
Bud (size)	Microdontia Macrodontia	
Cap (shape of tooth)	Dens in dente Germination Fusion Tubercle	
Apposition & maturation	Amelogenesis & dentinogenesis imperfecta Concrescence Enamel Pearl	

Cap stage anomalies

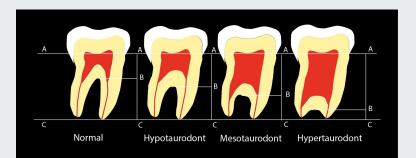
Dens in dente

- Literal meaning = tooth in a tooth
- Due to inward folding of the enamel organ into the dental papilla

Germination

• Partial development of 2 teeth from a single tooth following incomplete division

Fusion


• Union between dentine &/or enamel of 2 or more separate developing teeth before calcification

Concrescence, enamel pearl & taurodontism

Fig. 1. Clinical appearance of spherical enamel pearl located in the furcation region of the root.

Concrescence

• Roots of one or more teeth united by cementum after formation of crowns (usually in 3rd molars)

Enamel pearl

• Localised formation of enamel on the root surface

Taurodontism

- Enlarged pulp chamber and apically displaced furcations
- Have different subtypes

Causes of developmental defects

Genetic/systemic causes (cause generalised disturbances)

- Mutations in genes (e.g., ENAM, AMELX, MMP20, KLK4 with AI)
- Syndromes and multisystem disorders

Environmental causes

- Localised disturbances:
 - Localised infection of deciduous teeth
 - \circ Irradiation \rightarrow can disturb development of teeth lying in path of the radiation beam (e.g., childhood cancer therapy)
 - Trauma to deciduous teeth (often Mx. incisors)
- Generalised disturbances
 - Malnutrition (e.g., Vit A deficiency)
 - Excessive ingestion of fluoride during permanent tooth development
 - Medical conditions/infectious diseases/fever/drugs
 - Antibiotics (e.g., tetracycline)
 - Low birth weight

Other causes

Just for reference.

Table 2.3 List of etiological factors, reported in the literature, responsible for the formation of enamel defects in the permanent dentition

	Systemic		
Local	Perinatal and neonatal	Postnatal	Hereditary conditions
Trauma Primary tooth Surgery Distraction osteogenesis Tooth forceps	Neonatal hypocalcemia	Nutritional and gastrointestinal disturbances resulting in hypocalcemia and vitamin D deficiency	22q11 deletion syndrome
Chronic periapical infection in a primary tooth	Severe perinatal and neonatal hypoxic injury	Bacterial and viral infections associated with high fever	Autoimmune polyendocrinopathy- candidiasis-ectodermal dystrophy
Cleft lip and palate	Prolonged delivery	Exanthematous diseases	Candidiasis endocrinopathy syndrome
Radiation	Prematurity	Juvenile hypothyroidism	Cleidocranial dysostosis
Burns	Low birth weight	Hypothyroidism	Celiac disease
Osteomyelitis	Twins	Hypogonadism	Congenital adrenal hyperplasia
Jaw fracture	Cerebral injury	Phenylketonuria	Congenital contractual arachnodactyly
	Neurological disorders	Alkaptonuria	Congenital unilateral facial hypoplasia
	Hyperbilirubinemia	Renal disorders	Ectodermal dysplasias
	Prolonged neonatal diarrhea and vomiting	Congenital heart disease	Ehlers-Danlos syndrome
	Severe neonatal infections	Congenital allergy	Epidermolysis bullosa
	High fever	Oxalosis	Focal dermal hypoplasia
		Mercury poisoning (acrodynia)	Heimler's syndrome
		Fluoride	Hypoparathyroidism
		Prolonged use of medicines	Ichthyosis vulgaris
		Prolonged diarrhea and vomiting	Lacrimo-auriculo-dento- digital syndrome
		Radiation and	Morquio syndrome
		cytotoxic therapy	Mucopolysaccharidosis
			Oculodentodigital dysplasia
			Orodigitofacial dysostosis
			Prader-Willi syndrome
			Pseudohypoparathyroidism Seckel syndrome
			Tricho-dento-osseous syndrome
			Tuberous sclerosis
			Vitamin D-resistant rickets William's syndrome

Hypomineralisation and hypoplasia

Developmental defect	Cause	Clinical appearance
Hypoplasia	Quantitative defect in enamel caused by insufficient deposition of the enamel matrix. If related to a certain time period is called chronological hypoplasia.	Pits, grooves or bands on the tooth &/or thinner enamel. Can be localised or generalised, affecting the whole crown or parts of the crown.
Hypomineralisation	Qualitative defect involving defective mineralisation of the tooth. Amount of enamel matrix deposition remains normal.	Presents as changes in colour & translucency due to spaces/pores in enamel which are filled with water/protein (changed reflective index). Shiny white or stained opaque patches, lines, spots, with distinct or indistinct boundaries. In severe cases, there is also pitting, grooves in the teeth and potential flaking.

If the hypomineralisation/hypoplasia is caused by excessive fluoride ingestion during permanent tooth development, this is called fluorosis (only affects permanent dentition).

Amelogenesis imperfecta

- Enamel defects caused by the mutation in genes encoding enamel matrix proteins
 - Autosomal types: ameloblastin, enamelin, tuftelin
 - X-linked: amelogenin
- Subtypes include: hypoplastic, hypomaturation and hypocalcified/hypomineralisation amelogenesis imperfecta
- Diagnosis includes: family history, clinical observation (should present at eruption affecting permanent and primary teeth), radiographs
- Clinical implications: tooth discoloration, tooth sensitivity, post-eruptive and pre-eruptive disintegration

Hypoplastic Al

Hypomaturation AI

Hypocalcified/hypomineralisation AI

Amelogenesis imperfecta subtypes

Developmental defect	Cause	Clinical appearance
Hypoplastic Al	Hypoplasia = quantitative defect, usually resulting from abnormalities of proteins that form or degrade the enamel matrix	Thin enamel, surface pitting or grooving.
Hypomaturation AI	Qualitative defect due to defective maturation (defect in final growth of tissue with deposition of inorganic material and removal of organic material)	Opaque, white, brown-yellow, soft, vulnerable to attrition
Hypomineralisation/ hypocalcified AI	Qualitative defect due to defective mineralisation (defect in initial crystal growth and formation)	Enamel thickness normal at eruption, opaque, chalky appearance, stains and wears rapidly.

Dentine defects

Developmental defect	Cause	Clinical presentation
Dentinogenesis imperfecta	An uncommon defect of dentine formation. Due to genetic mutations inherited in an autosomal dominant way (dentine sialoproteins affected).	Affects both dentitions. Normal contour at eruption but distinctive translucent opalescent or amber-like hue. Enamel is weakly attached to dentine, resulting in enamel being rapidly lost-> marked attrition (DEJ flat, not scalloped). Radiographically the teeth have short, blunt roots with partial or total obliteration of pulp chambers

- Other dentine defects include: osteogenesis imperfecta with hereditary opalescent dentine, shell teeth, dentinal dysplasia
- Regional odontodysplasia (ghost teeth)- all dental tissues affected

Differential diagnosis + onset & duration of disturbance

Consider for differential diagnosis:

- Localised vs. generalised
- Are the primary and/permanent teeth affected.
- Bilateral/symmetrical upper/lower.
- If family pattern is similar or not
- SHX & Mhx of prenatal mother and young child
- Caries risk and location of the lesion

How to calculate the onset and duration of an environmental disturbance:

Onset: Age at which calcification begins for the tooth + (fraction where the disturbance starts **from the incisal edge/cusp tip**) x crown formation time (3 or 4yrs)

Duration: vertical width of the defect as a fraction x crown formation time (3 or 4yrs)

Exam Style Questions

Question 1

What are 2 possible causes of this developmental defect?

Answer:

- In this image we can see a hypoplastic defect localised to the 22.
- Localised causes of defects include:
 - Localised infection of deciduous teeth
 - Irradiation→ can disturb development of teeth lying in path of the radiation beam (e.g., childhood cancer therapy)
 - Trauma to deciduous teeth (often Mx. incisors)
- Likely cause would be trauma or localised infection of the deciduous predecessor

(B)

(Wright 2015)

Question 2

(Bansode et at., 2019)

Sarah, a 16 year old girl has presented at your dental clinic with a complaint of ugly looking teeth. She says that all her adult teeth have looked scratched like this all her life but her baby teeth were normal. There was no family history of this defect.

1. Briefly describe the tooth defect.

Generalised linear grooves on the buccal surfaces of all teeth. Localised brownish white shiny patches on the 13, 21, 23. (Can also go into more detail about the exact location on the buccal surfaces).

2. What is your differential diagnosis & why?

Chronological hypoplasia as there is a qualitative loss of enamel without a history of genetic disease.

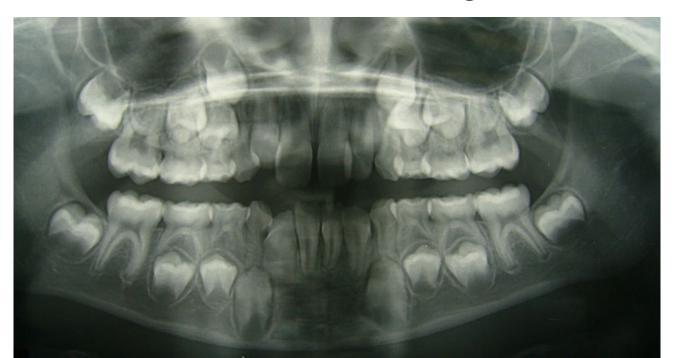
Question 2

(Bansode et at., 2019)

3. What are 2 possible causes of this defect?

Causes would be environmental disturbances causing generalised defects. 2 examples would be malnutrition and systemic disease during permanent tooth development.

4. What would the onset and duration of the disturbance be?


Onset: using the 11 & 21, the defects starts about 60% down from the incisal edge.

Onset = 3 months (calcification begins) + 0.6 (how far down the disturbance starts) x 4yrs (crown development) = about 2.5 years old

Duration: check how wide the defect is vertically

10% x 4 yrs = around 5 months

Question 3: Calculate the dental age.

Textbook recommendations

E-BOOK Ten Cate's oral histology : development, structure, and function⊗

Nanci, Antonio,, Ten Cate, A. R., 8th ed., St. Louis, Missouri :, Elsevier, [2013], Total Pages 1 online resource (407 p.)

E-воок Craniofacial and Dental Developmental Defects [electronic resource] : Diagnosis and Management Wright, J Timothy., 1st ed. 2015., Cham :, Imprint Springer; Springer International Publishing , 2015.,

Total Pages 1 online resource (131 p.)

Add tags to item

P View online

BOOK

Pathology of the Hard Dental Tissues; 1. Aufl.

Schuurs, Albert; 2012

****** This is a seminal text uniquely dedicated to oral hard tissue pathology, presenting the growth of clinical knowledge and advancement in the field in recent years...******

....

...

77