GROUP & INDIVIDUAL LEARNING BDS2 Neuroanatomy & Exam Review

BOQ SPECIALIST

COMMONWEALTH OF AUSTRALIA

Copyright Regulations 1969

WARNING

This material has been reproduced and communicated to you by or on behalf of The University of Adelaide under Part VB of the *Copyright Act 1968* (the *Act*).

The material in this communication may be subject to copyright under the Act. Any further reproduction or communication of this material by you may be the subject of copyright protection under the Act.

The AUDSS assumes no responsibility or liability for any information, materials or other content provided by any of our *student* lecturers. All content is viewed and used by you at your own risk and we do not warrant the accuracy or reliability of any of the lecture material.

The views expressed are those of the individual contributors and not necessarily those of the AUDSS of Adelaide School of Dentistry.

Do not remove this notice.

Neuroanatomy

Ascending pathways of the CNS

<u>Random terminology</u> <u>Fascicle</u> = bundle of nerves <u>Lemniscus</u> = bundle of secondary nerves

Revise the scenarios in the anatomy book

Ascending pathways of the CNS

General Pathways

- 1. Spinothalamic tract pain, temperature, crude touch
- 2. Dorsal Column tract fine touch, proprioception

Mandibular Pathways

- 1. Pain, temperature, crude touch
- 2. Fine touch
- 3. Proprioception

Spinothalamic Tract - Pain, temperature and crude touch

Cerebral Hemispheres

Midbrain

PONS

Medulla Oblongata

3rd order neuron (tertiary)

- <u>Thalamus</u> ovoid mass of grey matter on each side of the 3^{rd} ventricle \rightarrow Acts as a relay station
- Pass through the <u>posterior limb</u> of the <u>internal capsule</u> (broad band of white matter medial to lentiform nucleus and lateral to the thalamus)
- Then to the post-central gyrus of the cerebral cortex

2nd order neuron (secondary)

- Cross the midline \rightarrow pass up the spinal cord
- Travel through the brain stem
- Synapse in the thalamus (ventral posterior lateral nucleus)

1st order neuron (primary)

- Afferent fibres from receptors are peripheral processes of 1^o neurons
 - Synapse with 2⁰ neurons in the <u>dorsal horn of the spinal cord</u>

Dorsal Column Pathway - Fine touch and proprioception

Cerebral Hemispheres

Midbrain

PONS

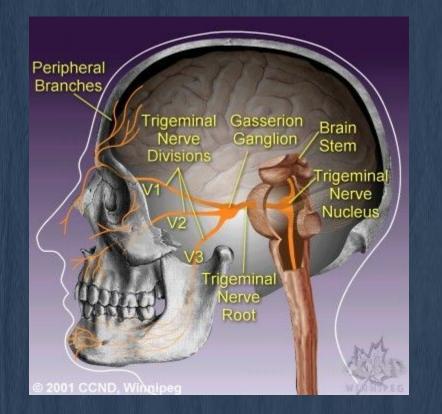
Medulla Oblongata

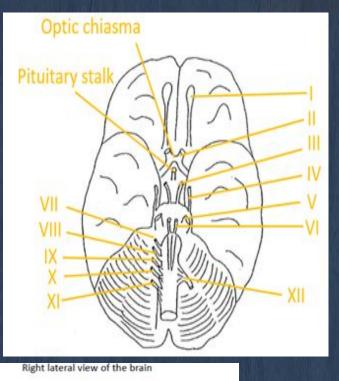
3rd order neuron (tertiary)

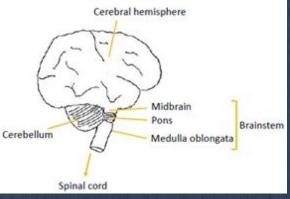
Thalamus – ovoid mass of grey matter on each side of the 3rd ventricle

2nd order neuron (secondary)

Sweep downwards initially, then cross over and ascend up the brainstem. \rightarrow Internal arcuate fibres – in the medulla (formed by crossing over


fibres)

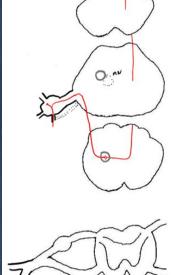

 \rightarrow <u>Medial lemniscus</u> – bundle of 2⁰ neurons travelling towards the thalamus Synapse in the <u>thalamus</u> (VPLN)


1st order neuron (primary)

- A) <u>Medial fasciculus gracilis</u>: Fibres from lower parts of the body are added and travel together
- B) <u>Lateral fasciculus cuneatus:</u> fibres from upper parts of the body are added and travel together
 - Fascicles synapse in nuclei (nucleus gracilis and cuneatus) respectively in the medulla

Mandibular Nerve Pathway

2+2+4+4 Cerebral hemispheres (2) + Midbrain (2) + Pons (4) + Medulla (4)


Mandibular Pain, Temperature and Crude touch Pathway

Cerebral Hemispheres

Midbrain Mesencephalic nucleus

PONS Pontine nucleus

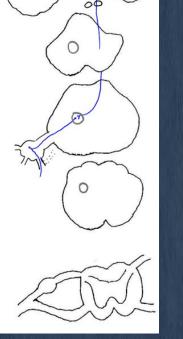
Medulla Oblongata Spinal nucleus

3rd order neuron (tertiary)

From the thalamus, passes through internal capsule \rightarrow sensory cortex

2nd order neuron (secondary)

- Cross over to the other side and ascends the brainstem
- Trigeminal lemniscus 2º neurons ascend in it
- Synapse in the thalamus


- 1st order neuron (primary)
 - Cell bodies located in the trigeminal ganglion
 - Descend down to medulla oblongata
 - Synapse in the spinal nucleus

Mandibular Fine touch Pathway

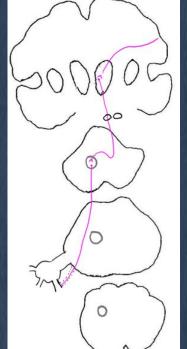
Cerebral Hemispheres

PONS Pontine nucleus

Medulla Oblongata Spinal nucleus

3rd order neuron (tertiary)

From the thalamus, passes through internal capsule \rightarrow sensory cortex


2nd order neuron (secondary)

- Some crossover (not all) and ascend in the trigeminal lemniscus
- Synapse in the thalamus

- 1st order neuron (primary)
 - Cell bodies located in the trigeminal ganglion
 - Synapse in the pontine nucleus

Mandibular Proprioception Pathway

Cerebral Hemispheres

Midbrain Mesencephalic nucleus

Pontine nucleus

Medulla Oblongata Spinal nucleus

PONS

3rd order neuron (tertiary)

From the thalamus, passes through internal capsule \rightarrow sensory cortex

2nd order neuron (secondary)

Cross over to the other side and ascends in the <u>trigeminal</u> <u>lemniscus</u> to the thalamus

1st order neuron (primary)

- Cell bodies located in the mesencephalic nucleus
- Peripheral processes of 1⁰ neurons deliver proprioceptive information from:

Muscles of mastication TMJ PDL

Descending pathways of the CNS

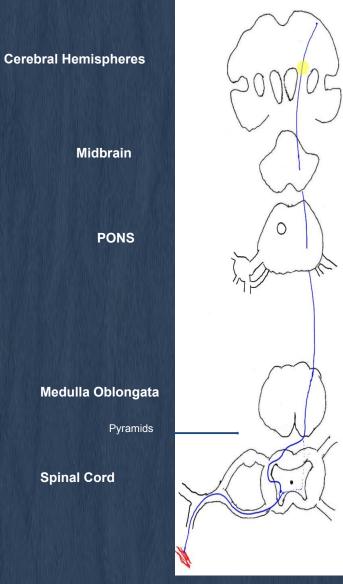
Descending pathways of the CNS

General Pathways

1. Corticospinal tract (pyramidal) - voluntary movements of limb muscles

Trigeminal Nerve

1. Corticonuclear (corticobulbar) - voluntary movements of orofacial muscles


2 main neurons = upper and lower motor neurons

Upper Motor Neuron Defect

- Spastic paralysis (initially flaccid)
- No significant muscle atrophy
- Fasciculations and fibrillations not present
- Hyperreflexia

- Lower Motor Neuron Defect
 - Flaccid paralysis
 - Significant atrophy
 - Fasciculations and fibrillations
 - Hyporeflexia

Corticospinal (pyramidal) tract

Upper Motor Neuron

- Crosses over at pyramids
- Synapses in the ventral horn of the spinal cord

Lower Motor Neuron

• Innervates associated limb muscle

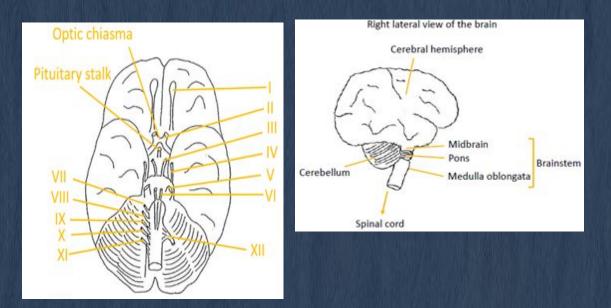
Corticonuclear tract

Upper Motor Neuron

- Crosses over in pons
- Synapses in the motor nucleus

Lower Motor Neuron

• Passes through motor root to associated orofacial muscle


Medulla Oblongata

S00000000000000

For descending pathways we covered:

- Limbs
- Trigeminal Nerve

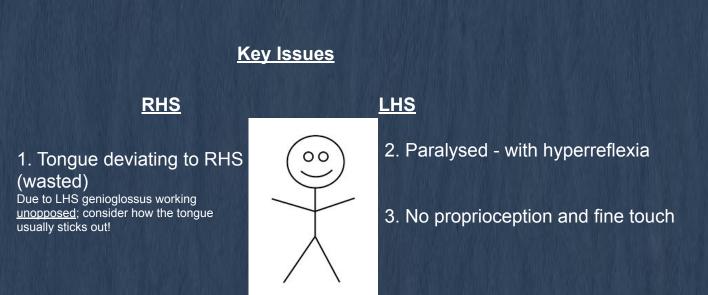
What about all the other cranial nerves?

- Know hypoglossal nerve (in relation to geniohyoid muscle)
- Facial nerve is a bit complex, usually don't worry too much about this unless Dr Ranjitkar has time to explain it

2+2+4+4 Cerebral hemispheres (2) + Midbrain (2) + Pons (4) + Medulla (4)

A brief note regarding SNS and PNS

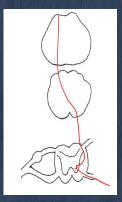
- SNS and PNS innervate the same organs/muscles
- If one is damaged, the other will run <u>unopposed</u>


Normal SNS activation	SNS (cervical sympathetic outflow) Damage
Increase sweating	<u>Anhydrosis</u>
Constriction of blood vessel to non-essential organs	<u>Vasodilatation</u>
Contraction of levator palpebrae superioris muscle (moves upper eyelid)	<u>Ptosis</u>
Dilation of pupils	<u>Miosis</u>

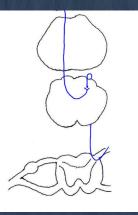
Approaching Questions

CHAPTER 17

MR MYDULLOSO - PARALYSED ON ONE SIDE

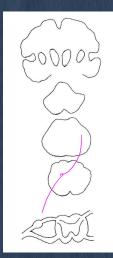

Mr Mydulloso, a 60-year-old postman, arrives in a wheel-chair for his dental appointment, with his wife accompanying him. He is paralysed on the left side, and has no conscious proprioception or fine touch sensation on that side. However, pain and temperature sensations are normal throughout the body. He also has exaggerated tendon reflexes on the left side of the body. His wife tells you that he is having difficulty articulating certain words. When you examine his tongue, you notice that it deviates to the right side. The right side of his tongue also appears to be wasted compared with the left. He also seems to have some imbalance in the movement of his eyes. His wife explains to you that Mr Mydulloso suffered a stroke a few months ago and spent some time in hospital.

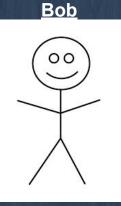
2. Paralysed with hyperreflexia


• Hyperreflexia = upper motor neuron defect

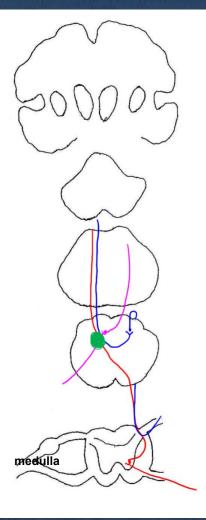
Corticospinal tract

3. No proprioception or fine touch


Dorsal Column tract

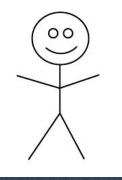


1. Tongue deviating to the RHS (wasted)


- Wasting = Lower motor neuron defect
- Must be in medulla oblongata
 - XII innervates genioglossus →
 UMN crosses over in medulla and
 synapses in the hypoglossal
 nucleus → LMN innervates muscles
 of the tongue

Hypoglossal Nerve tract

medulla



<u>RHS</u>

<u>LHS</u>

1. Tongue deviating to RHS (wasted)

Due to LHS genioglossus working <u>unopposed</u>; consider how the tongue usually sticks out!

Paralysed - with hyperreflexia
 No proprioception and fine touch

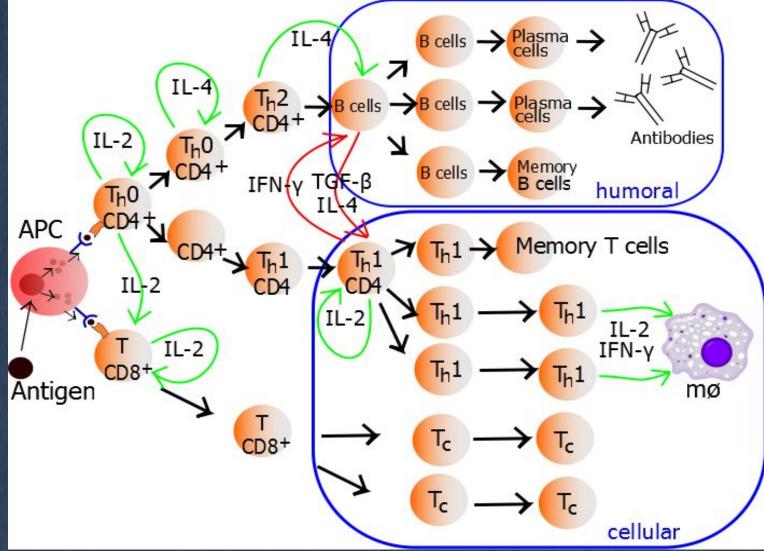
Green spot = most likely location of the lesion (in the <u>RHS of medulla oblongata</u>)

Exam Review

Topics

- Immunology Tolerance + hypersensitivity
- PCC
- Microbiology
- Sterilisation
- Wound healing
- Inflammation & Wound Healing
- Local Anaesthetic
- Anatomy
- ILA
- Treatment Planning
- Steps for Restoration
- Erosion + management

Tolerance


Ability to recognise own self-antigen

2 types:

Central tolerance - negative selection, BM and T Peripheral tolerance

- clonal anergy (half activated state)
- immunoregulation/immunosuppression
 - CD4 \rightarrow Treg or CD25 assoc. with autoimmune disease
 - CD8 \rightarrow T0 or CD28 \rightarrow suppress graft rejection
- Th1 and Th2 Inhibition \rightarrow establish tolerance

CD4-CD8 and Th1-Th2 Inhibiton

https://upload.wikimedia.org/wikipedia/commons/thumb/6/69/Lymphocyte_activation.png/400px-Lymphocyte_activation.png

B Cell Tolerance

• Some self-reactive B cells can escape negative selection

Peripheral tolerance via

- clonal anergy
- inhibition or regulation from regulatory cytokines
- Somatic hypermutation

Loss of tolerance ⇒ autoimmunity Conditions: Rheumatoid arthritis, Sjogren's Syndrome, Multiple Sclerosis, Phemphigus Vulgaris, **RHD**

Hypersensitivity

Type I - allergic response mediated by IgE eg. Anaphylaxis, latex allergy, asthma

Type II - cytotoxic response mediated by IgM/IgG/complement e.g. RHD, anaemia, erythroblastosis fetalis, myasthenia gravis

Type III - involves immune complex formation mediated by Complements, IgG and antigen. (Ab + Ag) e.g. Serum sickness, RA, SLE (lupus).

Type IV - Delayed-type (days) - cell mediated (Th1 cells, macrophages, cytokines) e.g. contact dermatitis, chronic transplant rejection, MS.

Vaccinations

Build immunity to viral infections via:

- response to surface antigen on viral particle
- response to infected host cell

Types:

- 1. Attenuated pathogen (reduced virulence)
- 2. Killed pathogen
- 3. Extracts of products of pathogen
- 4. Adjuvants in vaccines

PCC

As with volunteer patients, scenarios can come up in exams. Dealing with:

- Anxious patients
 - Approach?
 - Management?
- Angry patient
 - how do you respond to them?
 - DEFUSE

PIA

- Go through ILA scenarios from sem 1 & 2
- Know LA landmarks
- Anatomy comes up more (((a lot)))
- Radiographic interpretation: Bitewings, OPG.
- Occlusion lab
- EBD from sem 1

Structure	Chemical Composition	Function
Cell wall		Cell shape and protection of
		cytoplasm
Cell wall in gram +ve	Mainly peptidoglycan and	
	teichoic acid	
Gram – ve	Thin layer of peptidoglycan,	
	multilayered: outer membrane	
	 lipopolysaccharide 	
Cytoplasmic membrane	Phospholipid bilayer containing	Controls movement of solutes
	globular proteins	into and out of cell
		-site of respiratory enzymes,
		DNA and cell wall synthesis,
		secretion
Extracellular polymers	Single and mixed	Adherence to substrates,
	polysaccharides	inhibition of phagocytosis
Flagella	Protein	Movement
Pili	Protein	Conjugation (Gram –ve, used as
		penis essentially)
		-adherence
Nucleoid	DNA	Carries hereditary information
Ribosomes	RNA and protein	Protein synthesis
Inclusion bodies		
Glycogen	Polysaccharide (glucose)	Energy storage
PolyOHbutyrate	Lipid	Energy storage
Endospores	Dehydrated form of vegetative	Bacteria enter this state in
~~~	cell	times of high stress to have
		protection from the
		environment

## Strep vs Staph

Characteristic	Staphylococcus	Streptococcus
Shape	grape like clusters -growth occurs in multiple axis	pairs or chains -growth occurs in single axis
Catalase Test	positive	negative
Haemolysis	none or beta haemolysis	alpha (green) or beta (complete) or gamma (none) haem -can be used to differentiate species of strep
Important members	staph aureus	s. mutans s. pyogenes s. rattus
Useful diagnostic Test	catalase coagulase blood agar	NB: know terminology for classifying bacteria e.g. facultative anaerobes, etc

## G+ve vs G-ve

Properties	G+ve	G-ve
Thickness of cell wall	Thicker -20-25nm -one layer	Thinner -11-15nm -two layered
Gram reaction	Stains blue/violet/purple	Stains pink/red
LPS layer	Absent	Present
Peptidoglycan Content	High -penicillin prevents NAM-NAG link in peptidoglycans forming (beta 1-4 linkage)	Low
Teichoic acids	Present	Absent
Toxins produced	Exotoxin	Endotoxin
Lipid content	Low	High
Action of lysozyme	Digests peptidoglycan layer hence easily destroyed	Cannot penetrate LPS layer
Antibiotics	More susceptible	More resistant

## **Mechanisms of Antibiotics**

- Disrupt cell membrane function
  - Includes polymyxins and polyenes
- Inhibits cell wall synthesis
  - Targets peptidoglycans
  - Requires cells to be growing
  - Includes B-lactams, penicillins, cephalosporins
- Inhibit DNA/RNA synthesis
  - e.g. Rifamycin
- Inhibit protein synthesis
  - Targets ribosomes
  - Includes tetracycline
- Inhibition of folic acid metabolism
  - Includes sulfonamides

## **B-lactamase**

-B-lactamase is an enzyme that breaks down the B-lactam ring
-Gives rise to antibiotic resistance
-Is transferable among different species within a biofilm

## Metabolism

-PEP PTS system-Glucose Permease-Effect of F on metabolism of sugars

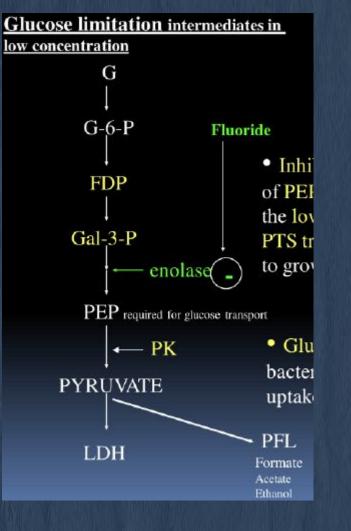
#### **PEP-PTS** system

- -High affinity transport system
- -in acidogenic oral bacteria (strep, lacto)
- -can move sugars in when concentrations are low
- -optimal under lower conc, neutral pH and slow rates of bacterial growth
  -repressed under conditions of excess sugar, low pH and high growth rates

"P"lease be my friend!

#### Glucose Permease Transport

-ATP dependent


 Functions at high growth rate and low pH
 has low affinity meaning it moves large amounts in when the concentration is high

"G", I'm popular!

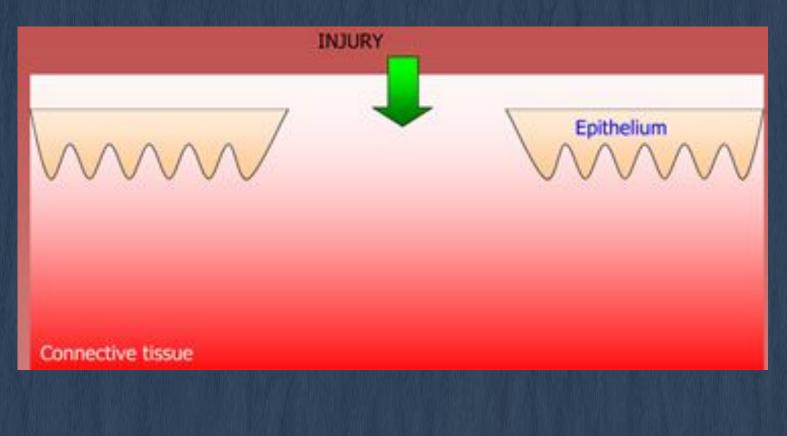
### Fluoride on Metabolism of Sugars

- -Inhibits enolase and reduces production of PEP
- -low levels of PEP means reduced effectiveness of PEP-PTS system
  -means bacteria cannot grow

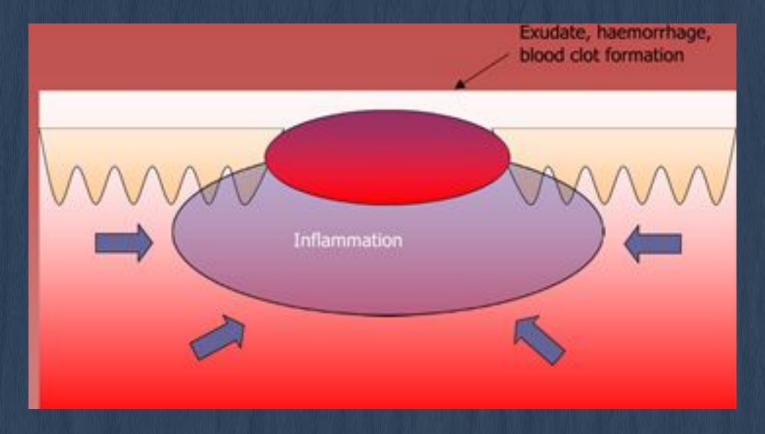
# Fluoride on Metabolism of Sugars



-reduces amount of acid, etc produced -also reduces the total number of bacteria as they do not grow as much therefore when sugar is introduced into mouth again, overall less acid is produced


## Wound Healing

Primary Intention -Incisional wound; no tissue loss -area to be repaired decreased by apposition of wound edges via suture or fibrin -blood clot small -granulation tissue small -minimal wound/scar


## Wound Healing

- **Secondary Intention**
- -e.g. ulcer
- tissue loss can't get close apposition of wound edges
- -area to be repaired is relatively large
- -large blood clot formed
- -more inflammation
- -wound contraction and more scarring

#### 0 hours, injury = big defect in epithelium

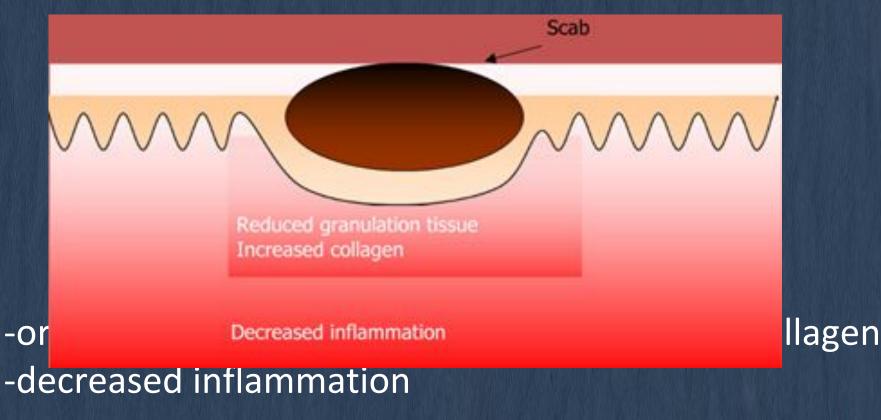


#### 24 hours



#### 2 days - 1 week

Reduced intensity of inflammation

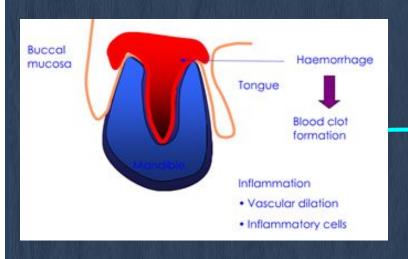

ranulation Tissue

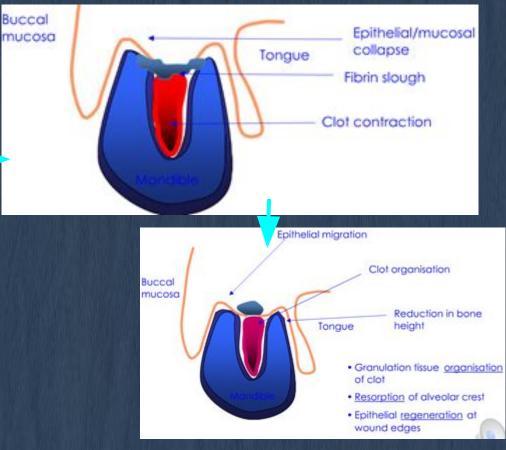
Exudate, fibrin etc. → SCAB

by fibrin = scab -granulation tissue = increased inflammation -epithelium regenerates under the scab

sed

#### 2 weeks





1-2 months -epithelium and epidermal layer organisation complete -subepithelially: -ongoing organisation and maturation -ongoing decreased vascularity -ongoing collagen maturation -can have contraction of collagen - if wound is large can have functional problems

-uncommon in oral cavity

# Tooth Socket

-extraction = traumatic injury + creation of bony defect
-Heals via secondary intention and bone regeneration





### **Tooth Socket Complications**

-failure to form blood clot -e.g. due to haemophilia (can't make clot), anaemia, anticoagulant therapy, smoking -may cause infection (osteomyelitis) -Dry socket aka alveolar osteitis unknown aetiology, usually Md molar and premolar -Tx: will heal by itself usually, keep area clean -may need special dressing in some cases -usually v. uncomfortable/painful

## Neoplasia

Clinical issues of benign neoplasms:

- Pressure from continuously growing lesion impinging on adjacent vital structures
   Hormone production, e.g. thyroid tumour (goitre) – overproduction of TH; issues with temperature regulation and metabolism
- Disfigurement (functional and cosmetic applications)
- Malignant transformation; if untreated
- Patient anxiety/discomfort

## Neoplasia

Clinical issues of malignant neoplasms: sig morbidity and mortality due to:

- Destruction of and impingement on adjacent vital structures
- Fluid flow obstructions BV, lymphatics, GI all hollow tubes; if blocked, significant issues arise.
- Haemorrhage from aggressive ulceration
- Metastases and resultant secondary tumour formation
- Debilitating aggressive secondary tumour formation
- Debilitating aggressive treatment modalities (e.g. radio/chemotherapy, invasive surgery)
- Pain and psychological trauma

What is the difference between a granuloma and granulomatous inflammation?

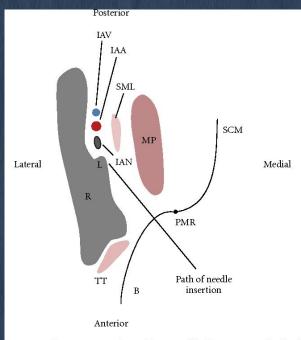
#### Granulomatous inflammation:

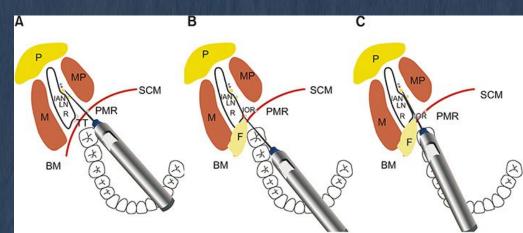
- Granulomatous tissue composed of granulomas (cluster of epithelial histiocytes) persisting protractedly due to ongoing inflammation caused by tenacious offender lymphocytes
- Giant cells also sometimes seen
- NOT phagocytic; produce cytokines to direct and orchestrate ongoing inflammation (communicative)

#### • Vs Granulation tissue:

- intermediary tissue between inflammation and healing
- vascular + collagen
- before re-epithelialisation

#### Sterilisation


-got tested on different methods of sterilisation and why we do it
-e.g. why do we autoclave?
-know why we use the bag for sterilisation


### LA questions

- -pKa affects LA diffusion, how?
- -Why is it difficult to anaesthetise an area with inflammation?
- what are some reasons for LA failure
- is the landmark correct? if not, draw correct location
- LA + anatomy = 90% of last year's PIA
- Trigeminal neuralgia? :"(

### LA questions

# - Be able to draw (CORRECT SIDE, NO ABBREVIATIONS):





#### EBD

- Not covered in Semester 2, but several MCQ in Paper 2 2017
- Learn lectures well Q's come directly from content covered